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at the base of the scutellum; one similar spot, oblong and transverse 

on the disc of each hemelytrum: body beneath yellow with a black 

bronzed spot on each side of the mesostethium ; a narrow band of the 

same colour at the base of the venter, and a row of five similar spots on 

each side: the abdominal point reaches only the insertion of the inter- 
mediate feet (C. incarnatus, Am. & Serv.). Long, 25—30 mill. 

Var. b. :—Large; head with antenne deep black ; pronotum orange, 

with the anterior margin deep black: scutellum orange, immaculate : 

hemelytra orange with a median fuscous spot: wings fuscous: margin 

of abdomen variegated with orange and black: feet deep black (C. 

aurantius, Fabr.). Long, 25-30 mill. 

Var. c. :—Scutellum, hemelytra and pectus immaculate. Ceylon. 
Reported from Corea, Japan, Java, Sumatra, Borneo, Siam, Malac- 

ca, Singapore, Tenasserim, Ceylon, Madras, Bombay, Bengal, Pondicher- 

ry, Silhat, Assam. The Indian Museum has specimens from Tenasserim, 

Assam, Sikkim, Calcutta, Karachi, Malabar. Varies in colour from a 

sordid yellow, to orange and a bright maroon red, with and without the 
black spots. 
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§. 1. Introduction. 

In a paper on “The Differential Equation of a Trajectory,” which 

was read at the last May meeting of the Society, (Journal, 1887, Vol. 
LVI, Part. II, pp. 117—120; Proceedings, 1887, p. 151), I pointed out 

that Mainardi’s complicated solution (reproduced by Boole) of the pro- 
blem of determining the oblique trajectory of a system of confocal 

ellipses, was equivalent to a pair of remarkably simple equations which 

admitted of an interesting geometrical interpretation. Believing, as I 

firmly did, that every simple mathematical result could be established 

by a correspondingly simple process, I naturally thought it worth while 
to re-examine the whole question, to see if the very artificial process of 
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Mainardi, by no means less complicated than his result, could be materi- 

ally simplified. I was, thus, led to the following very general theorem, 

which it is my object in the present paper to establish and illustrate, 

and, which shews that whenever the coordinates of any point on a curve 

can be expressed by means of a single variable parameter, the coordinates 

of the corresponding point on the trajectory may be similarly expressed ; 
and, as an immediate corollary to my theorem, I have pointed out the 

relation which connects it with the theory of Conjugate Functions.* 

§. 2. Theorem. 

Theorem.—If the coordinates of any point on a curve are expressed 

by means of a variable parameter 6, by the two equations 

& =f, (6, a), 

y =fo (8, b), 

‘where a and b are two arbitrary constants; and, if we seek the oblique 
trajectory of the system of curves obtained by varying a and b, subject 

to any condition which can be analytically represented by means of a 

parameter y, as equivalent to the system 

a=F, (y, h), 

b= FP, (y, h), 

where h is a known constant; the coordinates of the corresponding point 
on the trajectory are given by the system 

X=f, ah ECA RS 

where w is given as a function of 4 * the saeiads equation 

dy n Li 

dé N-uM 

where nm = tan a, 

a being the angle of intersection of the curve and the trajectory, and 

= (3)-(8) 
was Ny, Ye Ws 

dé dy ' dé dy 

_ fs Hy Hy By 
~ do dy dO dy 

To establish this theorem, let us first fix the ideas by confining our 

attention to one definite member of the given family of curves as well as 

to one of the trajectories; then it is clear that the common point of inter- 

section of the curve and the trajectory, may be arbitrarily regarded as a 

* For a full analysis of this paper, see the Proceedings for 1887, pp. 250-251. 
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point, either on the one, or on the other; and, from each point of view, 

the coordinates satisfy two entirely different equations, though their 

actual values are the same in both cases; hence, if the coordinates of the 

point, regarded as a point on the curve, be furnished by the system 

w= fF; (6, a), aoc ccc vevcee (1) 

Y =fo (8, b), coc cce cee eed (2) 

and the trajectory is obtained by varying a and 6 subject to the limi- 
tations 

a=F, (y, h), cosegeaepeer on 
b= I, (Wy, i), Sem st 

the coordinates of the corresponding point on the trajectory must be 

obtained by substituting in (1) and (2) the values of a and 6b from (38) 

and (4), viz, we have 

Kah {ZF mM} secre (5) 
Y=fy { 6, F, (¥, h) } nde te iy (5 

In the next place, we have to determine y as a function of 4, and this is 
easily obtained from the condition that the trajectory intersects the curve 

at a constant angle a, Now, it is well-known that 

dy aY 

dx’ dX 
are the trigonometrical tangents of the angles which the tangents to the 

curve and to the trajectory, at their common point of intersection, make 

with the axis of x; hence, if n=tan a, we have 

dy dY 

dx dX _ 
Us 

da dX 

dy dX da aY 
oo ENN ot ea de dX dy 

do dd * d6é dé 
Remembering that in differentiating X and Y with respect to 9, we must 

regard 6 as a function of y, but not so in the case of # and y, we have 

dx _ df; dy  dfy 

dé ~ dé’ db dO 
dX df, , df, dy 

‘do. dd dw dé’ 
aY  dfy , dfg dy 

6 dd dy dé’ 
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which lead to the values 

dy aX dx aY 
ee 

dé dé dé dé 

i =i dfy Hi | 
dy a0 dO dw 

de dX , dy d¥ 
| do do’ a6 do 

=(2)+(4 ‘Wy (dh dh, te te 
do dO dd 4d0 dw" dé dy 

Hence, putting 

u=(%) +(2y. pelts en) 068) 
* a £ a ip ates (9) 

we have finally, from (7), the equation 
Mh — = sterner CLD: 

which is exactly the theorem enunciated above. 

It may not be altogether unprofitable to note that the trajectory is 

determined by two conditions, viz., in the first place, we have to vary 

the constants in a definite manner ; and, in the second place, the trajectory 

is to intersect the curve at a given angle; the first of these conditions 

leads to the actual values of the coordinates of any point on the trajec- 

tory, furnished by (5) and (6), while the second condition determines 

the relation between @ and W which enter into the values of those coor- 

dinates. 

§. 3. Application to Mainardi’s Problem. 

Example I.—In order to test the power and generality of this 
theorem, we shall apply it to solve Mainardi’s problem of determining 

the oblique trajectory of a system of confocal ellipses. The primitive 
ellipse being 

y? 

e441 misemvesaes (12) 

we get the confocal system by varying a and b subject to the condition 

— b= h?. saihas wegidhin fart) 

The coordinates of any point on the ellipse are given by 

w=a cos §, 

y=b sin 6, 



76 <A. Mukhopadhyay—Dvifferentrial Equations of Trajectories. [No. 1, 

while the relation between a and b given in (13), is equivalent to 

a=h cosh y, 

b=h sinh y, 

so that, the coordinates of any point on the trajectory are given by 
X=h cos @ cosh y, desesecctiecs, (Cham 
WS Reine SIMA yl aec ees (15) 

Again, to determine the relation between 6 and w, we have 

fy=h cos 6 cosh yy, 
f,=h sin 6 sinh y, 

which lead to the system 

ah —h sin @ cosh yf, 

if a : = h cos @ sinh y, 

dy _ 3 ae h cos @ sinh &, 

df, ace h sin @ cosh y, 

and, these give 
L=h? (sin? 6 cosh’ yy +cos? 6 sinh? ~), 
M= 0, 

N = hi? (sin? 6 cosh? w+ eos? 6 sinh? y), 

so that, the differential equation (11) becomes 

dy 
7) = 1% 

whence, won (A+6), 

where d is the constant of integration. Substituting in (14) and (15), 

we see finally that the coordinates of any point on the oblique trajectory 
of a system of confocal ellipses, are given by 

X =/h cos $ cosh n (A+ 8), 

Y=/h sin @ sinh n (A+6), 

which is exactly the system of equations to which Mainardi’s result was 

reduced in my former paper, and geometrically interpreted there. 

§. 4, Other applications of the Theorem. 

Example II.—To find the oblique trajectory of the system of 
confocal hyperbolas 

a i 

ay eae 
where a* + 62 = hi, 
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The coordinates of any point on the hyperbola are given by 
2 =a cosh 8, 

y= b sinh 6, 

where a=h cos y, 

b=h sin y, 

so that the coordinates of any point on the trajectory are given by 
X =h cosh @ cos y, 

Y =/h sinh 6 sin y. 

To determine yw as a function of 6, we have 

f, =h cosh @ cos y, 
f, =h sinh 6 sin y, 

whence 

af, -% 
7) =h sinh 6 cos y, 

| 
= h cosh 6 sin y, 

af, _ ; tig h cosh @ sin yy, 

ara rane h sinh @ cos y, 

and, therefore, 

L=/h?* { sinh? 6 cos? + cosh? 6 sin* y} 

M='0 

N=-—/h? { sinh? 6 cos? w+ cosh? 6 sin? y} 

The differential equation (11) becomes 
dy 

@O wi? 
so that yon (A—8), 
where, of course, A is a constant different from the A in the solution of 

Mainardi’s problem. The coordinates of any point on the oblique 

trajectory of a system of confocal hyperbolas are, therefore, given by 
X=h cosh @. cos n (A—@). 

Y=h sinh @. sin n (A—8). 

If we put 

g=4-5, Anau, 
these equations may be written 

X= hcos?. cosh = (w+), 

Y = —/A sin #. sinh ! (w+), 
n 
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which system is slightly different from what has been obtained above as 
the solution of Mainardi’s problem; but the equations are obviously 
capable of a geometrical interpretation closely analogous to what is given 
in my former paper. 

If we had to obtain by the ordinary method the oblique trajectory 
of a system of confocal hyperbolas, we should have to eliminate a and b 
from the equations 

az pe? 

#4 Ny 
dy a® 8 

ia. a ae Y 

a® be 
The result may be expressed in the form 

{ (na —y) + (w— ny) v} { (+ ny) + (na+y) p} 
=h? (n+p)(1+np). 

But, it is surely no agreeable task to have to find the actual equation of 
the trajectory by integrating this differential equation. 

Assuming the expressions for the coordinates’ of any point on the 

oblique trajectory of a system of confocal ellipses, it is easy to write 

down the expressions for the coordinates of any point on the oblique 

trajectory of a system of confocal hyperbolas. Consider the point of 

intersection of an ellipse and its trajectory, and draw through this point 

the confocal hyperbola; then, since the ellipse and hyperbola cut each 
other orthogonally, the trajectory, which intersects the ellipse at an 

angle a, will intersect the hyperbola at an angle ( + «), in both cases 

measuring the angle of intersection in the same sense; the trajectory, 

therefore, is also the oblique trajectory of the confocal hyperbolas (at an 

angle 5 + a), and the coordinates of any point on it, as such, will, 

therefore, be obtained by writing for n (= tan a), — : ( = tan E :|) 

Example III.—To find the oblique trajectory of a system of para- 
bolas which have a common principal axis and which touch each other at 

their common vertex, and, the equations of which are, accordingly, 
obtained by varying a in 

y? = 4ax. 

The coordinates of any point on the curve are given by 

=a tan? 6, 

y = 2a tan 8, 
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As the two constants of the general theorem are here equal, the coordi- 

nates of any point on the trajectory are given by 

X = y tan? 6 

Y=2y tan 0. 

To determine y as a function of 6, we have 
fi =y tan? 6 

fo=2y tan 6, 
which give 

De = 2y tan 8 sec! 6, 

te = 2 w sec? 6, 

im ae 
eT rp 0 

d 2 
o = 2 tan 0, 

so that we have 

L=4y? sec® 6 
M=2 vw tan 6 sec? 6 (2+ tan? @) 

N= —2y tan? 6 sec” 0 

and the differential equation for y becomes 

dy _ 2n W sec* 6 
dd  tané (2n + tan 6+” tan? 0)’ 

This may be written 

dy 2n sect Od 6 

yy” tan 6 (2n+4 tan 6+7 tan? 6)’ 

which, by putting tan 0=z, reduces to 

dy ca (1+2?) dz 

yo z (2n+2+ nz’) 

or, 

wy ~D2m+e+ne2 2 2% Ate+nz*" 

Integrating, we have 

hs y 3 Qnzt+1—rA/1— Bn 

ONG Toe Qnz +1 44/1— en 
—log z—1 log (Qn+z+nz*), 

which gives 

3 

— r {Qn tan 0+1— Ie PF ih ER 

tan 6 ./(2n+tan 0+ n tan? 6) em tan 0+1 cas b= Gal = Gak 
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This holds so long as 8n* Z 1, or, if a be the angle of the trajectory 

ial yy ee 
2/2 

If tan a be greater than this value, the corresponding value of y will be 
still more complex, but may easily be found. In the particular case 

where 

1 
tan a= we a 

the differential equation for w reduces to 
dy dz dz dz 
—=3 /2 —_. -—-—- ——. 
W vi (pa/e)* 2  B@t+e/2 

Integrating and substituting for z, we have 
—3 /2 

y tan 6 (tan 6+,/2) =e tan O+ of 2, 
If the orthogonal trajectory be required, the expression for y admits 

of considerable simplification, for, then we have n = 0, and the differen- 

tial equation for y becomes 

which on integration leads to 

log ¥ — log z— § log (1+ 2), 

1 
or, we (1+ 2)2=A, 

which, by putting z= tan 6, reduces to 
22 

y? = —_—________, 
tan? 6 (2+ tan? 0) 

The coordinates, therefore, of any point on the trajectory are given by 
2? tan? 6 

2= ¥* tant é= ————_ 
x Pica 2+ tan? 6’ 

8A2 
Y4 = 4y? tan? @= ——____ 

a a 2+tan? 

which easily shew that the trajectory is the ellipse 

y? + 24% — 4r2, 

Example IV.—To obtain the oblique trajectory of a pencil. of 
coplanar rays radiating from a point, and whose equation is, therefore, 
obtained by varying a in 

Yy = an. 
First Method. . 

The coordinates of any point on the line are given by 
Y= a, 

w= 9: 
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so that the coordinates of any point on the trajectory are 
X= 6, 

YL=vG, 

where, to determine wW as a function of 6, we have 

fi =9, 

fr =O, 
which furnish the system 

df, af, 
do 1, “dé er YW, 

af, Hs 
ay = ap =” 

and by virtue of these, we have 
L=14+y%, 

M=6y, 

N= —-8@, 

whence, the differential equation for y is 
dy nl ee: (1+ y) 

dd N-nM —0—n6W 
which gives 

l+ny no 

TR eo 
Integrating, we get 

6 
an) w+ 5 log (1+y4) = —n log Y 

which easily reduces to 
I “ 

Xd ie tan~* 

1 
—— tan ly 

be : eh % 
J 1+¥ 

dy —= tan o 

Tt is not difficult to shew that these values lead to a well- eee result ; 

for we have 

Y 
mm 

J ie tan" w 
and (X8+Y2)?=re ™ 

11 
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Transforming to polar coordinates, by putting 

X=r cos 9, Y=o sin ¢, 

we have 

tan ?= Vy 

—— tan’ Wy 

THNe ; 

whence, 

288 
rare ™ 

which is the logarithmic spiral. 

Second method. 
We might also have proceeded as follows, viz., putting a=tan PB, 

the coordinates of any point on the line are given by 

a = & cos B, 

y= of sin B. 

The coordinates of any point on the trajectory are, therefore, given by 

X = 9 cos W, 

Y= sin w. 

To determine y as a function of 6, we have 

fi = ef cos YW, 

f= ef sin Wy, 

whence, we have the system 
d 
a = of cos W, 

a = BY sin Wy, 

Zs ae sin y, 

“ = of cos W, 

which furnish us with the values 
L=e20 M=0, N=e- 29. 

The differential equation for f becomes 

Bean is 
i” 

whence won (A—8). 

The coordinates of any point on the trajectory are, consequently, given by 

X = cos n(A— 6), 

Y= sin n(A— 8), 
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and it is not difficult to shew that these values belong to the logarith- 
mic spiral. 

Example V.—To find the oblique trajectory of a system of circles 
which touch a given straight line at a given point, and whose equation 
is, therefore, obtained by varying r in 

Pred + y? = 2rn. 

The coordinates of any point on the circle are given by 

x=r (1+cos 8), 
y=r sin 6, 

so that, the coordinates of any point on the trajectory are given by 

X=y (1+ cos 9), 
i w sin 6. 

To determine y as a function of 6, we have 

fi, =v (14+ cos 8), 

fa eusu 6, 

which lead to the system 

ae j 
“ag = — ¥ sin 6 

Ufa 76 wy cos 6 

af, 1+cos 6 

df, 
dy = sin 0, 

whence, we have 

i y? 

M= —y sin 6 

N=y (1+ cos @). 

The differential equation for y reduces to 

dy ny 
d@~ 1+cos 6+n sin 0 

Writing = tan a, where a is the angle of the trajectory, we have 

k d (0—a) 
—=si ——_——_—_—., 

cos a+cos (6 — a) 

Integrating, we have at once 

eos =e i adi pas Y 5 EL oe 

log 1 = log == — 
a a Ps, 

cos oe 5 tan ae 
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whence 

The equations 

X= wy (1+cos 0) =2 w cos? 
Nl Dd 

eNO 6 
Y=y sin O=2y sin 5 cos 5 

which give the coordinates of any point on the trajectory, therefore, 
become 

6 6 
X= 2A COs 5 COs («-5) 

Y = 2A sin ; cos (« _ ‘). 

Since 

x4 ¥8=438 ons (a—2) 
it is easily shewn that the trajectory is the circle 

a+ y®% = 20 (# cos a+y sin a). 

Example VI.—To find the oblique trajectory of a system of para- 

bolas which have a common focus and principal axis, and whose equation 

is, therefore, obtained by varying m in 
y?=4m (a@+m). 

Putting m= ar, 

any point on the curve is seen to be given by 
«@ = G2 — aa, 

Yy = 2a0. 

The coordinates of any point on the trajectory are, therefore, given by 
X = @— wy, 

Y=206y, 
where y is to be determined as a function of 6 from the system 

f,= eas 

f= 20, 

so that we have 

df, Af 
de = 26, de = 2y, 

af, af, 
dy = — ay, dy = 26, 
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and these values shew that 
L=4 (#+y?) 
M=0 

N= —4 (@+y?). 
The differential equation for py, consequently, becomes 

dy 
dé == — 

whence 

yon (r = 0). 

Hence, finally, the coordinates of any point on the trajectory are given by 
XK = — n* (A— 6)?. 
Y = 2n6 (A-— 8). 

Since X and Y are two quadratic functions of the parameter @, it is clear 
that the trajectory must be a conic; in fact, the actual equation is 

7 
(14n%)* (a®@+y2) = { (x —1) #+2ny — 2nd? 

which may be thrown into the form 
2 

{ ras — (n? — 1) y} = 4n* r2 { n2 2 — (n?—1)«—- 2ny | : 

which shews that the trajectory is a parabola, and, if n = tan a, the polar 
equation is 

J 7. sin (a+$)=a sin a. 

Example VII.—To find the oblique trajectory of the system of 
curves obtained by varying 6 in the equation 

e” sin y=ab. 

The coordinates of any point on the curve are given by 

x= log a r/ +b? 

b 
i tan? =. 

6 

The coordinates of any point on the trajectory are, therefore, given by 

X =log a J/ Bey? 

Y =tan™’ . 

To determine y as a function of 6, we have 

fi = log at log @+y"), 
t= tan~* 

which give the values 
df; Yo 
dd” G+y? 
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df, _ —¥ 
dO” G4 y2 

d,s 
dy ~ @+y? 

df, __ 0 
dy P+ y” 

whence 
Del aR me ast ya 

and the differential equation for yp is 

dy 
a6 = —-Nn, 

which gives 
y=n (A <r 6). 

The coordinates of any point on the trajectory are, therefore, given by 

) X =log a n/ @+n2 (A— 6)? 

Y=tan™? ee ith 

It can easily be shewn from this system that the actual equation of the 
trajectory is 

e” (sin y+n cos y) =aan, 

or, if a be the angle of the trajectory, this becomes 

e” sin (y+a)=aA sin a. 

§. 5. Conjugate Functions. 
It will be remarked that in some of the examples given above, the 

integration of the differential equation for y was materially facilitated 

whenever we found 
M0) i ON, 

It is, therefore, a matter of importance to discover under what circum- 
stances this may be expected to happen. 

Theorem.—The coordinates of any point on a curve being given by 
v=f, (6, a), 

Y =f; 2 (6, b), 

and, the coordinates of the corresponding point on the trajectory by 

X=f, { 6, F, (y, 2)}, 

Y=f, {6 Fy, 1}, 
if we have 

y=n (A+9), 

and 

at: Hy, Ye e_ 
~ d6 dy dO dg.’ 

to prove that f; and f, must be conjugate functions of y and @. 
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To establish this, we see that the conditions given, viz., 

p=n (A+6), M=0, 

reduce the differential equation 

dy _ nL 

dé” N—uM 

to the condition 

L=N. 

Now, since i=. 

we have 

Bibi nh 
dé dy 
if, ier: af; dee say. 

dé dy 

Substituting in the value for N, we get 

vate H_H 
dO dy dO dy 

df, = 2 a Q 

7s, 
dw 

=— IL, 
df 
dé 

and, since N=L, 
we must have 

df, _ Ue fair Pemnew cerns CLO) 

Therefore 

; w= (2) - df; df 

dé dd dy 

| £4G NP (ofa 
u= (7%) + (a): 

whence 

Of, \ Gf, aa ae vaneciatisee (CLF) 

The two equations marked (16) and (17) make it manifest that f, and /, 

must be conjugate functions of w and 6. 
In Mainardi’s problem, which is the first example given above, we 

have y=n (A+0), M=0, 

so that the quantities 
h cos 6 cosh y, h sin 6 sinh y 

are conjugate functions of y and 6; hence, we infer from a well-known 
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property of these functions that the two curves 
cos « cosh y=a 

sin « sinh y =b 

intersect orthogonally at every common point of intersection. 
It may similarly be shewn that if we have 

pon (rA—8), M=0, 

the functions f, and f/f, are conjugate with respect to 6 and w; for the 
above investigation remains unaltered, except in that we have 

= —N, 

so that (16) becomes 

Gy) is 
dy — do’ eeoneovavecen (18) 

and we have 

(4 yes df, Us 
ae dé db dy’ 

_ (4%. , (4.\ ee (4) +(2y, 
whence 

df, af, Bay ovate tae caaeak eae 

and, by virtue of (18) and (19), it is again manifest that f, and f, are 
two conjugate functions of 6 and y. Consequently, as in the second 

example given above, we have 

yon (A—86), M=0, 

the quantities 
h cosh 6 cos y, h sinh 6 sin w 

are two conjugate functions of 6 and y, and, the curves 
cosh # cos y=a 

sinh # sin y = b 

are orthogonal trajectories of each other. 

Again, it is an elementary principle in the theory of conjugate 

functions that if ? and wy are any two conjugate functions of x and y; 

and if €, 7 are any two other conjugate functions of wand y: then, by 
putting € and 7 instead of «and y in the values of $ and w, we get two 

new conjugate functions of x and y. But, we have found above two 
pairs of such functions, v722z., 

?=sin « sinh y 

y= COs x es 

€=cosh # cos ¥ 

9 =sinh x» sin y ; ; 
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Hence we have the two new conjugate functions 

sin } cosh x COS y} sinh { sinh # sin y}, 

cos { cosh x COS y} cosh { sinh @ sin y}. 

We have, therefore, the theorem that the two transcendental curves 

sin { cosh @ COS y} sinh { sinh #% sin y} =e 

cos { cosh & COS y} cosh { sinh # sin y} = 6 

are orthogonal trajectories of each other. In the same manner, it may 

be shewn that the quantities which furnish the coordinates of any point 

on the trajectory in terms of @ and y, in the second method of establish- 

ing Example IV, as well as in Examples VI and VII, are conjugate 

functions. 

We shall now give some examples in which the properties of conju- 

gate functions will materially simplify the calculation. 

Example VIII.—Consider the tricircular sextic 

(c® + 2) (o® + 2+ h2)? = a2 {2 (2 + y®— RP)? 44? (a®@ +y2+ ne)" ; 

and suppose that its oblique trajectory is required when a is made to 

vary. Writing 
a®#=1+ d2, 

the equation may easily be thrown into the form 

a? (at y2+h2)” = ara® (02+ y? — k2)? 4 b2y2 (a2 4 2+ kh)”, 

whence it can be shewn without much difficulty that the coordinates of 

any point on the sextic curve are given by the system 

x* a—cos 6 b? ; 

~ a+ cos 6 b8+sin? 6’ 
y* a—cos@ _ sin?6 

2 a+cos 6 b2+sin® 6’ 
and we seek the oblique trajectory, when a and b are made to vary 

subject to the conditions 
a=cosh y, 

5 =sinh py. 

The coordinates of any point on the trajectory are given by 

X? __ cosh y—cos 6 sinh? y 

k* ~~ cosh y+ cos 0 sinh? »+sin? 6 

Y? cosh w,—cos 0 sin? 6 

k? cosh w+ cos 6° sinh? y+sin? 6 

To determine y as a function of 6, we have 

atm, Cire 

12 
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and then by actually calculating the values of 

df, df, df, af. 
—_- 

db” G0 ag” dy’ 
we can shew that 

L+N=0, M=0, 

whence the differential equation for y becomes 

aL ae 
gop et 

and won (A-8). 
But, from the theorem we have established at the beginning of this 

section, we know that the same conclusions may be legitimately drawn 

without direct calculation, if we can prove f, and f, to be two conjugate 

functions, and we proceed to do so. Now we know that if 

fou (04 e/ — 1 Peas Z=ETS 

the two conjugate functions A and B are given by the system 

AS sin? 0 

B?~ sinh? y 
cosh yw — cos 8 

ee = cosh y+ cos & 

whence it follows that 

9 _ cosh y—cos 6 sin? 6 

~ cosh y+ cos 6° sinh? y +sin? 6 
9 __ cosh y—cos 6 - sinh? y 

~ cosh »y+cos 6 sinh? y+sin? 6 

But these are the quantities which when multiplied by &* reproduce the 

squares of what we have called f/, and f, above, which was to be proved. 

Hence we finally infer that the coordinates of any point on the sextic 

(a2 + y2) (24 424 ke)” = a? { a (a2 + 4% — 2)? 4 42 (ao2@ 4 y24 a)* 

may be represented by the equations 

a a—cos 0 b2 

k?~ a+cos 6 b?4sin? 
y* a—cos9@ sin? 6 

ke atcos 6 b2+sin? 6’ 

where a’ —bé=], 

and, accordingly, the coordinates of any point on its oblique trajectory 
are furnished by the system 

X? cosh n(A— 6) — cos 6 sinh? (A — 6) 
k® ~ cosh n(A— 6) + cos 6° sinh? n(A— 0) + sin? 0 
Y? cosh n(A — 8) — cos 6 sin? 6 

7 — cosh n(A— 6) + cos 6° sinh? n(A— 0) + sin? 
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Example IX.—Take, again, the curve 

2 Q\2 _ a” a y" 
(2? +y?)" = a2 b2 

and suppose that its oblique trajectory is required, when a and b are 

made to vary subject to the condition 

a? — b= h’. 

The coordinates of any point on the curve may be written 

sa a cos 0 

~ a? cos* 6+ 0b? sin? 0’ 
b sin 6 

| I= 3? cos® 0+ 02 sin? 0 
and we have also 

a=h cosh » 

b=h sinh yp. 

The coordinates of any point on the trajectory are, therefore, given by 

X =. cos @ cosh y 

~ h (cos* 6 cosh? y +sin? 6 sinh? y) 

_ 2 cos 6 cosh y 

~ h (cosh 2y+cos 26) 
sin @ sinh yp. 

= h (cos? 6 cosh? y+ sin? 6 sinh? y) 
2 sin 6 sinh y 

) = h (cosh 2p -+cos 20)’ 

To determine y as a function of 6, we have 

8: Ae 

But f, and f, are two conjugate functions; for we know that if -ve 
separate the real and imaginary parts of 

sec (at/ —1 B) =A+4i/f/—]1 E 

_ 2cosacosh B 

~ cosh 28+ cos 2a 
B= 2 sina sinh B 

~ cosh 28+ cos 2a’ 

Hence, by the theorem of this section, we have 

L+N=90, M=0, 

and the differential equation for y becomes 

dy 
dd 

whence y=n(A—8). 

Y 

we have 

= —N 



92 A. Mukhopadhyay—Differential Hquations of Trajectories, [No. 1. 

We see, therefore, finally that the coordinates of any point on the 

oblique trajectory of the bicircular quartic 

Cee ib) aatemr 
which is obviously the inverse of an ellipse, may be represented by the 

system 

¥ 2 cos 6 cosh n(A — 8) 

h { cosh 2n(A — 0) + cos 26} 

oy 2 sin @ sinh n(A — 6) 

h { cosh 2n(A — 6) + cos 26} 

when a and b vary subject to the relation 

h? = a? — 2. 

Example X.—Again, if we seek the oblique trajectory of the 
transcendental curve 

b? ate * — 2 e 
tan? y = = ————__, 

ah? e” — 6% e * 

when a and b vary subject to the condition 

a® — $2 = h2, 

we see that the coordinates of any point on the curve are given by the 
system 

But as 
a=h cosh y, 

b=h sinh wv, 

the coordinates of any point on the trajectory are given by 

a 

cot Y =coth y tan 6. 

To determine y as a function of 6, we notice that the quantities 
f, = % log 2 (cosh 24 — cos 20) —log 2 

f, = cot * (coth y tan 6) 

are two conjugate functions, being in fact exactly the two quantities 

which we obtain in separating the real and imaginary parts of 

log sin (6+/ —1 w) 

Hence, by the theorem of this section, we have 

Lait Na AN ap, 
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and, as before, 

wo=n(A-8). 
Therefore, we finally infer that the coordinates of any point on the 

oblique trajectory of the curve 
C= 2£ ae 

tan? y = a Seaweed cere 
a hee*® —bee* 

when a and b vary subject to the relation 
a®—}% = h?, 

are given by the system 

20%# — cosh 2n(A— 6) — cos 26. 
tan y= tanh n(A — 8). cot 6. 

From the theorem established in this section, it is again evident 

that, if fi (9, W), to (9, w) 

be any two conjugate functions of @ and y, and the equation of a curve 

be obtained by eliminating 6 from the system 
x =f; (6, a) 

y =fo (9, b), 
the equation of the oblique trajectory of this curve when a is made to 

vary is obtained by eliminating 6 from the system 

K=f, {6 nr-6)} 

Y= fy {4 n(r-6)}. 
Similarly, if the equation of a curve is obtained by eliminating wy from 

the system 

x=f, (a, W), 

y=fo (@, ), 

the equation of the oblique trajectory of this curve when a is made to 

vary is obtained by eliminating w from the system 

K=/f, {nQty), ¥} 
Y=fz {n(A+¥), y } 

Again as from the well known formula for expanding 

f (O+/—1y) 
and separating its real and imaginary parts, viz., 

A=fO~-% fr OLE fF" 0- be. I /2 /4 ’ 

fav? @- : fl" (8) +&., 
we can determine at pleasure an infinite number of pairs of conjugate 

functions, it is clear that we may obtain without any difficulty an infinite 
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number of curves whose oblique trajectories may be determined with 

ease by the theorems and methods of this paper; but it is needless to 
multiply instances, as the examples given above will, it is hoped, amply 
illustrate these observations. 

16th November 1887. 

Additional Note on Mainardi’s Problem. 

Since the above paper was read, I have been informed by Prof, 

Booth that Prof. Michael Roberts, in his Lectures on Differential Equa- 
tions delivered at the University of Dublin, used to solve Mainardi’s 

problem by the help of elliptic coordinates; I have not the opportunity 

of examining the solution arrived at by Prof. Roberts (as I believe it 
has never been published), but I give below the results I have obtained 

by means of the coordinates suggested. 

If a be the semi-axis-major of the primitive conic, and h half the 

distance between its foci, its equation is 
a? yj 

and any member of the confocal family is obtained by varying a; so 
that, if A, » be the elliptic coordinates of any point P on the trajectory, 
they are determined from the ay sters 

2 x y 
eto eT =1, 

a ae 
viz., X is the semi-axis-major of the ellipse, and yw the semi-axis-trans- 
verse of the hyperbola through P confocal to the primitive one; hence, 
solving between these equations, we have 

22 

ORE 
a — (MBP) (pi ht) 
oo h2 

Taking the logarithmic differential, we see that the element of arc of 

any curve through Pis | 
aie pe Re pe 

ds* = da? + dy? = a daA® — aah 

‘Hence, if ds, ds, be the ree of arc of the confocal ellipse and 

hyperbola whose semiaxes are A, p, and which intersect orthogonally at 

P, we have, for the ellipse regarding a constant, 
2 — 

ds,* = aaa 

dp”. 

dp’, 
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and, for the hyperbola regarding p as constant, 
2 — 5 
cane dr, 

Now, if a be the angle of the AS viz., the angle at P between 

the trajectory and the ellipse (A), we have clearly 

ds," = 

aa =tan a= Nn. 
ds, 

Hence - Y 2 

ae dN? — pe? — a woe dM = n*, ime dp’, 

or 

dx dp 

SB” J 1h 
Integrating, we have 

log O47 FS h?) =—n cos ~* ot k, 

which is, accordingly, the equation of the trajectory in elliptic coordi- 
nates. It will be remarked that, though the application of elliptic 
coordinates removes the difficulties of integration, the result is not 
obtained in an appreciably simpler form; and, besides, the method is 

not one of general application, as it requires a knowledge of the elements 

of arc, as well of the given curve as of its orthogonal trajectory; the 
methods and theorems of this paper, however, effectually remove these 

disad vantages. 

It may usefully be noted that if we use the inverse hyperbolic 

functions, the integral of 
dx i on ee! AN 

J/ Mh /Te— pe 
may be written 

1A 1 LY ae cosh 7 +m COS 7 hs 

and this at once shews that if we have 
A\=h cosh 6, 

where @ is a variable parameter, we must have 
1 

4 =h cos — (k— 6). 

In this form it is not difficult to identify our solution with Mainardi’s 

result, viz., 

M gi ae hee 
h2 x 

— 2n tan~* ns A —1+log ———_—. = C, 

SNe es i+ 
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where M satisfies the quadratic 

(a? +y? +h?) M=a2(M?+h?). 

ai: Me 
he 

— (A? — h®) (pw? — h?) 
= a tiie=-— 9 

For since 

x 

y* 

we have 
x+y? + h* =r? + p?, 

whence the quadratic for M becomes 
r 

M (+p?) =— (MP-+ 2), 
which may be written 

M?—h ( +f) M+? =0, 
fox ok 

the roots of which are 

[No a 

hp hx 
in weirs 

Taking for the present 
h 

M= ae 

we have Mx = p’, 

M ?} 

we (Me 
The equation of the trajectory, therefore, on substituting these values, 
becomes 

he 

ee a yy a: 
— 2n tan Seen Wg 10g. aA = 7S 

fe h? 
1+ ho 1— iE 

Putting 

h=p sec 9, 

C =2np, 
where p is 4 new constant, this becomes 

he 

1d 
aM a Nt, 20+ ?). 

2 

or 

1 1+ een(p +?) 

Fi 1— ene oy 
wae 
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or 

aa 1 — -22(p t+) 2 

mol 14 2nr9) 
Ae2(p + ?) 

~ {14 2merey |” 
whence 

i 1 a e2n(p r p) 

. 2p +P) 

=~ - et@t?) ronm@ty) | 

= = cosh n(p+?). 

We have, therefore, the system 
A\=h cosh n(p+?) 

A= 

p=h cos ¢. 

If we put 

n( p+?) = 9, 
6 

o= e mae 

this is equivalent to the system obtained above, viz., 
kc he ee 6 

pp =h cos - (0 —pn).. 

If we had used for M the value | 

_ hs 
a 

we should have to put 
t . Mz = A2, 

M_ 2 
eo pe 

which shews that », » would be interchanged in the equation of the 

trajectory, viz., that would give the system 

A=h cos #, 

#=h cosh n(pt+?), | 
and it is important to notice that this second system does not admit of 

being derived from the differential equation in elliptic coordinates, 

dr e dp. 

‘efi / te — pe 

For the above system is the solution of the differential equation 
dr ee 

n 
Eg RTC YP 

13 
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which is different from the one given above, viz., this leads to the 

primitive 
r -1 aa ft m COS 7, t cosh ‘r+k=0, 

so that, if 

A=h cos ¢, 

we must have | 
3 pp =h cosh n(p+). 

We see, then, that, because M is given by a quadratic, Mainardi’s result 

is really equivalent to two, viz., we have the two systems 
A=h cosh n( p+) 
w=h cos >. 

A=hcos > y 

f=h cosh n( p+?) 

and these two systems are the solutions of the two distinct differential 

equations 

If, now, we consider for a moment these two differential equations, we 

see that the first belongs to the trajectory which intersects the confocal 

ellipses at an angle a (where n= tan a), while the other belongs to the 

trajectory which intersects the confocals at an angle € = a), since 

J, rs 
Se tan (5-«) 

But, since the confocal hyperbolas intersect the ellipses orthogonally, it 
follows at once that the second differential equation belongs to the 
trajectory which intersects the confocal hyperbolas at an angle (7— a), 

in both cases measuring the angle in the same sense; hence, the solution 

hy. Mis + 

which leads to the system 
A=h cosh n(pt+) 
p= h cos p 

is relevant, while the value 
hx 

M — aes: | 

p 

which furnishes the other system 
A=h cos > 

#@=hcosh n( p+) 
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is irrelevant. We conclude, therefore, that, of the two solutions to 

which Mainardi’s result is really equivalent, only one is relevaut ; the 

other being wholly extraneous, as belonging to the oblique trajectory of 

the orthogonal system of confocal hyperbolas;* and, it is easy to dis- 

criminate which of the two solutions given by the quadratic 
(a* + 72 +h?) M = x (M?+ h?) 

leads to the relevant solution; for we have seen that the solution in 

point is furnished by 
hy M= 03 

now it is evident geometrically that 

ar a er 4 Bs 
which shews at once that 

ce . _ aX 

Mita ie 

it follows, therefore, that the smaller of the two roots of the quadratic 

in M is the proper value. We come to the conclusion, therefore, that in 

Mainardi’s system 
J = 

| 7a 1- /1-4 
oe -1 eon ee ] on tan ye pe"... = ar 

ber i 

(a? +y?+h*?) M= «(M*?+h?), 
the smaller root of the quadratic in M gives the oblique trajectory of the 

system of confocal ellipses, while the greater root furnishes the oblique 
trajectory of the system of confocal hyperbolas. I am not aware that 

the real character of the two solutions to which Mainardi’s result is 

equivalent has been before distinguished as above. 
Lastly, it is sufficiently obvious that the values of A, » given by 

either of the above systems may be geometrically represented by a 

construction closely analogous to what is given in my former paper 

mentioned at the beginning of this memoir. 
10th December 1887. 

* Instances of a single solution resolving itself into two, are by no means rare ; 

for example, in the case of the conic 

au? + Zhay + by? + 2ga + 2fy +c=0, 
this equation is really equivalent to the two 

by = —(ha +f) + / (h? — ab)2?2 + 2(hf — bg)x + (f? — bc) 

by =— (ha +f)— / (h? — ab)a? + 2( hf — bg )a + (f? — 6c) 
Bnt the present case is distinguishable from the case of the conic, inasmuch as we 

have here one of the solutions irrelevant, while, in the case of the conic, both the 
solutions are relevant, the compound solution being reproduced by multiplying 

together the resolved solutions. 


